Direct Proof - Universal Statements
 Lecture 13
 Section 4.1

Robb T. Koether
Hampden-Sydney College

Wed, Feb 5, 2014
(1) Proving Universal Statements

- The Generic Particular
(2) Proving Existential Statements
(3) Proving Statements with Mixed Quantifiers

4) More Universal Quantfiers
(5) A Puzzle

6 Assignment

Proving Universal Statements

- A universal statement is of the form

$$
\forall x \in D, P(x)
$$

- Use the method of generalizing from the generic particular.
- Select an arbitrary $x \in D$ (generic particular).
- Assume nothing about x that is not inherent to all elements of the set D.
- Show that $P(x)$ is true.

The Generic Particular

Theorem

The sum of two odd integers is an even integer.

- Let n and m be odd integers.
- Then $n=2 s+1$ and $m=2 t+1$ for some integers s and t.
- Then

$$
\begin{aligned}
n+m & =(2 s+1)+(2 t+1) \\
& =2 s+2 t+2 \\
& =2(s+t+1)
\end{aligned}
$$

- We know that $s+t+1$ is an integer, so $n+m$ is an even integer.

Proving Existential Statements

- A existential statement is of the form

$$
\exists x \in D, P(x)
$$

- We must either
- Choose a specific $x \in D$ and show that $P(x)$ is true, or
- Argue indirectly that such an x must exist.

Proving Existential Statements

Theorem

There exist integers a and b such that

$$
a^{2}+b^{2}=1000
$$

- Let $a=18$ and $b=26$.
- Then

$$
\begin{aligned}
a^{2}+b^{2} & =18^{2}+26^{2} \\
& =324+676 \\
& =1000 .
\end{aligned}
$$

Proving Statements with Mixed Quantifiers

- Many theorems are of the form

$$
\forall x \in D_{1}, \exists y \in D_{2}, P(x, y)
$$

- Many other theorems are of the form

$$
\exists x \in D_{1}, \forall y \in D_{2}, P(x, y)
$$

Proving Statements with Mixed Quantifiers

- For the form

$$
\forall x \in D_{1}, \exists y \in D_{2}, P(x, y)
$$

- Choose a generic particular $x \in D_{1}$.
- Then choose a specific $y \in D_{2}$ in terms of x and show that $P(x, y)$ is true.

Proving Statements with Mixed Quantifiers

- For the form

$$
\exists x \in D_{1}, \forall y \in D_{2}, P(x, y)
$$

- Choose a specific $x \in D_{1}$.
- Then choose a generic particular $y \in D_{2}$ and show that $P(x, y)$ is true.
- If you must argue indirectly that such an x exists, then choose the generic particular y in terms of x.

Proving Statements with Mixed Quantifiers

Theorem

For every real number a and for every real number $b>a$, there exists a real number c such that

$$
a<c<b .
$$

- We could restate the theorem as

$$
\forall a \in \mathbb{R}, \forall b \in \mathbb{R} \text { with } b>a, \exists c \in \mathbb{R}, a<c<b .
$$

Proving Statements with Mixed Quantifiers

- Let a and b be real numbers, with $b>a$.
- Let $c=\frac{a+b}{2}$.
- Then

$$
\begin{aligned}
a & <b \\
a+b & <2 b \\
\frac{a+b}{2} & <b \\
c & <b .
\end{aligned}
$$

Proving Statements with Mixed Quantifiers

- Similarly,

$$
\begin{aligned}
a & <b \\
2 a & <a+b \\
a & <\frac{a+b}{2} \\
a & <c .
\end{aligned}
$$

- Therefore, $a<c<b$.

Proving Statements with Mixed Quantifiers

Theorem

There exists a real number c such that for every real number $x>c$,

$$
x^{2}>100 x+1000
$$

- We could restate the theorem as

$$
\exists c \in \mathbb{R}, \forall x \in \mathbb{R} \text { with } x>c, x^{2}>100 x+1000
$$

or

$$
\exists c \in \mathbb{R}, \forall x \in \mathbb{R}, x>c \rightarrow x^{2}>100 x+1000
$$

Proving Statements with Mixed Quantifiers

- Let $c=110$.
- Let x be any real number greater than 110 .
- Then

$$
\begin{aligned}
x & >110 \\
x-50 & >60 \\
(x-50)^{2} & >60^{2} \\
x^{2}-100 x+2500 & >3600 \\
x^{2} & >100 x+1100 \\
x^{2} & >100 x+1000
\end{aligned}
$$

Proving Statements with Mixed Quantifiers

Theorem

For every real number m and for every real number b, there exists a real number c such that for every real number $x>c$,

$$
x^{2}>m x+b
$$

- We could restate the theorem as

$$
\forall m \in \mathbb{R}, \forall b \in \mathbb{R}, \exists c \in \mathbb{R}, \forall x \in \mathbb{R}, x>c \rightarrow x^{2}>m x+b .
$$

More Universal Quantfiers

Theorem

Let x be a real number. If for all real numbers y, we have $x y=0$, then $x=0$.

- The form of this statement is

$$
\forall x \in \mathbb{R},((\forall y \in \mathbb{R}, x y=0) \rightarrow x=0)
$$

- How do we prove this?
- What is its negation?

Proving an Existential Statement

A checkerboard

Proving an Existential Statement

Remove two squares and cover board with 1×2 blocks

Proving an Existential Statement

It can be done

Disproving an Existential Statement

A checkerboard

Disproving an Existential Statement

Remove two squares and cover board with 1×2 blocks

Disproving an Existential Statement

It cannot be done

A Universal and Existential Statement

Remove any two squares of opposite color

A Universal and Existential Statement

Can the board necessarily be covered?

A Universal and Existential Statement

Is that true for any $2 n \times 2 n$ board?

Assignment

Assignment

- Read Section 4.1, pages 145-160.
- Exercises 20, 21, 25, 28, 30, 37, 52, 53, 55, 58, page 161.

