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Proving Universal Statements

A universal statement is of the form

∀x ∈ D, P(x).

Use the method of generalizing from the generic particular.
Select an arbitrary x ∈ D (generic particular).
Assume nothing about x that is not inherent to all elements of the
set D.
Show that P(x) is true.
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The Generic Particular

Theorem
The sum of two odd integers is an even integer.

Let n and m be odd integers.
Then n = 2s + 1 and m = 2t + 1 for some integers s and t .
Then

n + m = (2s + 1) + (2t + 1)

= 2s + 2t + 2
= 2(s + t + 1).

We know that s + t + 1 is an integer, so n + m is an even integer.
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Proving Existential Statements

A existential statement is of the form

∃x ∈ D, P(x).

We must either
Choose a specific x ∈ D and show that P(x) is true, or
Argue indirectly that such an x must exist.
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Proving Existential Statements

Theorem
There exist integers a and b such that

a2 + b2 = 1000.

Let a = 18 and b = 26.
Then

a2 + b2 = 182 + 262

= 324 + 676
= 1000.
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Proving Statements with Mixed Quantifiers

Many theorems are of the form

∀x ∈ D1, ∃y ∈ D2, P(x , y).

Many other theorems are of the form

∃x ∈ D1, ∀y ∈ D2, P(x , y).
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Proving Statements with Mixed Quantifiers

For the form
∀x ∈ D1, ∃y ∈ D2, P(x , y),

Choose a generic particular x ∈ D1.
Then choose a specific y ∈ D2 in terms of x and show that P(x , y)
is true.
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Proving Statements with Mixed Quantifiers

For the form
∃x ∈ D1, ∀y ∈ D2, P(x , y),

Choose a specific x ∈ D1.
Then choose a generic particular y ∈ D2 and show that P(x , y) is
true.

If you must argue indirectly that such an x exists, then choose the
generic particular y in terms of x .
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Proving Statements with Mixed Quantifiers

Theorem
For every real number a and for every real number b > a, there exists
a real number c such that

a < c < b.

We could restate the theorem as

∀a ∈ R, ∀b ∈ R with b > a,∃c ∈ R, a < c < b.
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Proving Statements with Mixed Quantifiers

Let a and b be real numbers, with b > a.

Let c =
a + b

2
.

Then

a < b
a + b < 2b
a + b

2
< b

c < b.
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Proving Statements with Mixed Quantifiers

Similarly,

a < b
2a < a + b

a <
a + b

2
a < c.

Therefore, a < c < b.
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Proving Statements with Mixed Quantifiers

Theorem
There exists a real number c such that for every real number x > c,

x2 > 100x + 1000.

We could restate the theorem as

∃c ∈ R,∀x ∈ R with x > c, x2 > 100x + 1000,

or
∃c ∈ R,∀x ∈ R, x > c → x2 > 100x + 1000.
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Proving Statements with Mixed Quantifiers

Let c = 110.
Let x be any real number greater than 110.
Then

x > 110
x − 50 > 60

(x − 50)2 > 602

x2 − 100x + 2500 > 3600

x2 > 100x + 1100

x2 > 100x + 1000.
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Proving Statements with Mixed Quantifiers

Theorem
For every real number m and for every real number b, there exists a
real number c such that for every real number x > c,

x2 > mx + b.

We could restate the theorem as

∀m ∈ R,∀b ∈ R,∃c ∈ R,∀x ∈ R, x > c → x2 > mx + b.
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More Universal Quantfiers

Theorem
Let x be a real number. If for all real numbers y, we have xy = 0, then
x = 0.

The form of this statement is

∀x ∈ R, ((∀y ∈ R, xy = 0)→ x = 0) .

How do we prove this?
What is its negation?
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Proving an Existential Statement

A checkerboard
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Proving an Existential Statement

Remove two squares and cover board with 1× 2 blocks
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Proving an Existential Statement

It can be done
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Disproving an Existential Statement

A checkerboard
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Disproving an Existential Statement

Remove two squares and cover board with 1× 2 blocks
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Disproving an Existential Statement

It cannot be done
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A Universal and Existential Statement

Remove any two squares of opposite color
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A Universal and Existential Statement

Can the board necessarily be covered?
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A Universal and Existential Statement

Is that true for any 2n × 2n board?
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Assignment

Assignment
Read Section 4.1, pages 145 - 160.
Exercises 20, 21, 25, 28, 30, 37, 52, 53, 55, 58, page 161.
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